首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29504篇
  免费   3205篇
  国内免费   1578篇
电工技术   2868篇
综合类   1305篇
化学工业   8285篇
金属工艺   3437篇
机械仪表   1291篇
建筑科学   408篇
矿业工程   282篇
能源动力   1218篇
轻工业   2590篇
水利工程   88篇
石油天然气   839篇
武器工业   111篇
无线电   3674篇
一般工业技术   5717篇
冶金工业   670篇
原子能技术   612篇
自动化技术   892篇
  2024年   74篇
  2023年   689篇
  2022年   728篇
  2021年   1096篇
  2020年   1138篇
  2019年   1101篇
  2018年   1001篇
  2017年   1228篇
  2016年   1317篇
  2015年   1243篇
  2014年   1625篇
  2013年   1939篇
  2012年   2023篇
  2011年   2488篇
  2010年   1703篇
  2009年   1796篇
  2008年   1624篇
  2007年   1718篇
  2006年   1589篇
  2005年   1174篇
  2004年   1149篇
  2003年   1032篇
  2002年   826篇
  2001年   641篇
  2000年   532篇
  1999年   418篇
  1998年   368篇
  1997年   305篇
  1996年   278篇
  1995年   246篇
  1994年   232篇
  1993年   173篇
  1992年   184篇
  1991年   127篇
  1990年   93篇
  1989年   76篇
  1988年   59篇
  1987年   42篇
  1986年   29篇
  1985年   42篇
  1984年   41篇
  1983年   19篇
  1982年   27篇
  1981年   9篇
  1980年   12篇
  1979年   3篇
  1978年   4篇
  1976年   8篇
  1975年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
12.
Exocytosis plays an essential role in the communication between cells in the nervous system. Understanding the regulation of neurotransmitter release during exocytosis and the amount of neurotransmitter content that is stored in vesicles is of importance, as it provides fundamental insights to understand how the brain works and how neurons elicit a certain behavior. In this minireview, we summarize recent progress in amperometric measurements for monitoring exocytosis in single cells and electrochemical cytometry measurements of vesicular neurotransmitter content in individual vesicles. Important steps have increased our understanding of the different mechanisms of exocytosis. Increasing evidence is firmly establishing that partial release is the primary mechanism of release in multiple cell types.  相似文献   
13.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
14.
《Ceramics International》2022,48(12):16505-16515
Boron carbide has a wide solubility range owing to the substitution of B and C atoms in the crystal. In this study, boron carbides with different stoichiometric ratios were prepared using a hot-pressing sintering method, and the influences of the B/C atomic ratio on the microstructures and properties were explored in detail. X-ray diffraction analysis showed that excessive B atoms caused lattice expansion. Raman spectroscopy analysis showed disordered substitution of B atoms in the chains and icosahedra. Analysis of the densification process and microstructure evolution revealed that the addition of B promoted densification, and more stacking faults and twins occurred in B-rich boron carbide, and result in the densification mechanism gradually changes from atomic diffusion mechanism driven by thermal energy to plastic deformation mechanism dominated by the proliferation of dislocation and substructures. The introduction of chemical composition changes by dissolving excessive B into boron carbide further affected the microstructure and consequently the mechanical properties. The Vickers hardness, modulus, and sound velocity all decreased with the increase in B content. Moreover, the fracture toughness improved with increased B content. The flexural strength of the samples was optimised at the B/C stoichiometric ratio of 6.1.  相似文献   
15.
《Ceramics International》2022,48(7):9527-9533
In this work, a magnetodielectric coupling observed in barium titanate–cobalt ferrite composites synthesized using high-energy ball milling assisted via a thermal treatment is discussed. Vibrating sample magnetometry and dielectric spectroscopy showed that multiferroic composites possess both ferromagnetic and dielectric behaviors inherited from the parent ferromagnetic cobalt ferrite and ferroelectric barium titanate phases. The magnetocapacitance (up to 35%) recorded for x = 0.3, (1-x)BaTiO3–xCoFe2O4, can be attributed to the spin-dependent filtering mechanism. The composite with the aforementioned composition exhibited a homogeneous matrix–particle composite microstructure, which was achieved via high-energy ball milling during the mixing stage.  相似文献   
16.
《Ceramics International》2022,48(7):9765-9780
The polycrystalline ceramic specimens of three different alumino-silicate solid solutions (Al0.70Si0.30O, Al0.73Si0.27O and Al0.75Si0.25O) consisting of different alumina and silica concentrations have been synthesized by thermal plasma sintering technique. From structural analysis carried out by X-ray diffraction, the ceramics are mostly found to consist of two different phases of mullite and sillimanite. SEM images of these ceramics reveal a high dense and less porous microstructure with homogeneous distribution of grains throughout their surface. These materials exhibit high dielectric constant value (>103) with low dissipation factor. The AC conductivity analysis reveals that Al0.70Si0.30O and Al0.75Si0.25O ceramics possess room temperature conductivity values of the order of 10?5, whereas Al0.73Si0.27O has conductivity of 10?7 order that increases with rise in temperature. From the Nyquist plots, the grain and grain boundary conductivities are distinguished and negative temperature coefficient of resistance behavior is identified in these ceramics with small positive temperature coefficient of resistance effect.  相似文献   
17.
《Ceramics International》2022,48(16):23072-23080
The present study correlates the effect of R-cation radii on structural, vibrational, optical, and dielectric properties of rhombohedral rare earth aluminates RAlO3 (R = La, Pr, Nd). The polycrystalline samples of RAlO3 have been synthesized using sol-gel synthesis technique. Pure rhombohedral phase of RAlO3 samples has been confirmed with X-ray diffraction. Systematic decrements in the lattice parameter, bond length, and bond angle have been observed, giving rise to structural distortion due to decrease in ionic radii of R-cation. The phononic properties of RAlO3 have been investigated through Raman spectroscopy, where the degree of distortion of AlO6 octahedra can be analyzed with the peak position of Eg and A1g modes. An increase in the energy bandgap with decreasing R-cation radii shows an interconnection with the decrease in Al–O bond length. Interestingly, the decreasing dielectric constant with decreasing ionic radii of R-cation has been correlated with the difference in electronegativity of cation(R3+)-anion(O2?) pair. Also, a positive linear relationship between dielectric constant and energy bandgap has been investigated using Penn model.  相似文献   
18.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   
19.
A high-strength low-alloy steel, AISI 9254 (54SiCr6), is widely used for suspension spring production in the automotive industry. In this work, industrially manufactured zinc phosphate coated helical springs are subjected to detailed microstructural and surface analysis for better understanding of corrosion evolution. The material’s free corrosion potential and anodic/cathodic behaviour were investigated in NaCl solutions and corrosion propagation mechanisms were studied using potentiostatic polarisation on cross-sectional and external surfaces. The bulk material is fully martensite with uniformly distributed MnS inclusions, while the spring surface has a 2–3?μm mechanically deformed region introduced by shot-peening and a thin zinc phosphate coating. The corrosion open circuit potential of bulk material and shot-peened spring surface was about –0.7VSCE without significant difference, while phosphated surface is more noble (more positive potential). MnS inclusions, stimulating the anodic attack in the steel, influence corrosion propagation and pit morphology to a large extent that can have an impact on the spring performance.  相似文献   
20.
The process of cemented carbides manufacturing requires rapid and field elemental analytical techniques to control and evaluate the properties of products. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is such a potential elemental analytical technique. In this work, a portable LIBS instrument combined with a CF method was developed for the analysis of cemented carbides. Three batches of cemented compact carbides without reference samples were analyzed. Qualitative and quantitative analysis of the samples were achieved by using the portable LIBS instrument combined with CF method. To validate the analysis results, X-ray fluorescence spectrometry (XRF) was used to analyze the samples as well. The results of CF-LIBS agreed well with the results of XRF, with relative errors between ?29.53 and 24.70%. The results demonstrated that the portable LIBS instrument combined with CF method was capable for direct and rapid analysis without any need of standard measurements. Notably, with the portable LIBS instrument combined with CF method, acceptable accuracy could be obtained, which is promising for practical field applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号